Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Health Sci Eng ; 19(1): 997-1004, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34150287

ABSTRACT

Membrane bioreactor (MBR) is relatively a new technology in wastewater treatment. It can efficiently remove soluble and suspended organics. However, it may constantly encounter bio-fouling and cannot efficiently remove nutrient pollutants. These two deficiencies have motivated researchers to upgrade the design and operation of conventional MBR (CMBR). This study evaluates the performance of hybrid fixed bed MBR (FBMBR) treating real domestic wastewater in different operational conditions. It also compares the experimental results of FBMBR with the CMBR. For this purpose, two identical reactors are constructed as CMBR and FBMBR. Each module contains the net volume of 140 L and is operated continuously in two aerobic (DO > 4 mg/L) and anoxic (DO < 1 mg/L) conditions with average organic loading rates (OLRs) of 0.58, 0.71 and 1.55 kgCOD/m3d. The pore sizes of flat sheet membranes are 0.2-0.8 µm with total surface area of 1.4m2 per module. The experimental results revealed that the removal efficiencies of BOD, COD and TSS are above 95 % in both CMBR and FBMBR in all operating conditions. However, fouling occurs with lower rates in FBMBR. The growing rate of transmembrane pressure (TMP) in aerobic condition is 1.7mBar/day in CMBR, while it reduces to 1.2mBar/day for FBMBR in solid retention time (SRT) of 75 days and OLR of 0.58 and 0.71 kgCOD/m3d. In anoxic condition with SRT of 100 days and OLR of 1.55 kgCOD/m3d, the TMP in FBMBR is 59 % of CMBR. In addition, total nitrogen (TN) removal is between 12 % (aerobic) and 27 % (anoxic) in CMBR, while it is between 25 % (aerobic) and 49 % (anoxic) in FBMBR. Total phosphorous (TP) removal also ranges between 50 and 66 % in CMBR, while it is between 51 and 86 % in FBMBR. Consequently, using hybrid systems of FBMBR can reduce membrane fouling rate and improve nutrient removal efficiency in comparison with CMBR. This approach can reinforce the biological treatment efficiency and preserve permeate quality in higher OLRs or in lower DO level.

2.
Article in English | MEDLINE | ID: mdl-24910776

ABSTRACT

BACKGROUND: One of the most problems in developing countries is the integrated waste management and the effects on Greenhouse Gases (GHG) emission, Life Cycle Assessment (LCA) is used in this paper as a decision supporting tool in planning Municipal Solid Waste (MSW) managements. METHODS: In this paper the EPA's Waste Reduction Model (WARM) that provide GHG emission factors for waste stream components that are based on life Cycle Inventory (LCI) framework were used and The MSW management methods comprised in seven scenarios. RESULTS: The amount of GHG which was generated from Iran's waste sector estimated about 17836079 Metric Tons of Carbon dioxide Equivalents (MT CO2e) in this study. The lowest amount of GHG was generated by LFG capture system with energy recovery (557635 MT CO2e), while Incineration of materials being sent to landfill (1756823 MT CO2e), Landfill Gas (LFG) capture system with flaring (2929150 MT CO2e) and Improved source reduction and recycling (4780278 MT CO2e) emitted fewer GHG than the other scenarios. Lowest levels of gross energy consumption occur in source reduction with recycling and composting (-89356240 Mega British Thermal Unit, M BTU), recycling and composting (-86772060 M BTU) as well as Improved source reduction with recycling and composting (-54794888 M BTU). CONCLUSIONS: It appears that recycling and composting each offer significant GHG emissions and energy consumption reductions (scenarios 4, 5 and 6). Upon of the GHG emission and energy consumption results concluded that improved source reduction and recycling scenario has been the Balanced and appropriate technology for handling the solid waste streams in municipalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...